524 research outputs found

    Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF

    Get PDF
    Regenerative chatter is a well-known machining problem that results in unstable cutting process, poor surface quality and reduced material removal rate. This undesired self-excited vibration problem is one of the main obstacles in utilizing the total capacity of a machine tool in production. In order to obtain a chatter-free process on a machining center, stability diagrams can be used. Numerically or analytically, constructing the stability lobe diagram for a certain spindleholdertool combination implies knowing the system dynamics at the tool tip; i.e., the point frequency response function (FRF) that relates the dynamic displacement and force at that point. This study presents an analytical method that uses Timoshenko beam theory for calculating the tool point FRF of a given combination by using the receptance coupling and structural modication methods. The objective of the study is two fold. Firstly, it is aimed to develop a reliable mathematical model to predict tool point FRF in a machining center so that chatter stability analysis can be done, and secondly to make use of this model in studying the effects of individual bearing and contact parameters on tool point FRF so that better approaches can be found in predicting contact parameters from experimental measurements. The model can also be used to study the effects of several spindle, holder and tool parameters on chatter stability. In this paper, the mathematical model, as well as the details of obtaining the system component (spindle, holder and tool) dynamics and coupling them to obtain the tool point FRF are given. The model suggested is veried by comparing the natural frequencies of an example spindleholdertool assembly obtained from the model with those obtained from a nite element software

    Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle-tool assemblies

    Get PDF
    Self-excited vibration of the tool, regenerative chatter, can be predicted and eliminated if the stability lobe diagram of the spindle–holder–tool assembly is known. Regardless of the approach being used, analytically or numerically, forming the stability lobe diagram of an assembly implies knowing the point frequency response function (FRF) in receptance form at the tool tip. In this paper, it is aimed to study the effects of spindle–holder and holder–tool interface dynamics, as well as the effects of individual bearings on the tool point FRF by using an analytical model recently developed by the authors for predicting the tool point FRF of spindle–holder–tool assemblies. It is observed that bearing dynamics control the rigid body modes of the assembly, whereas, spindle–holder interface dynamics mainly affects the first elastic mode, while holder–tool interface dynamics alters the second elastic mode. Individual bearing and interface translational stiffness and damping values control the natural frequency and the peak of their relevant modes, respectively. It is also observed that variations in the values of rotational contact parameters do not affect the resulting FRF considerably, from which it is concluded that rotational contact parameters of both interfaces are not as crucial as the translational ones and therefore average values can successfully be used to represent their effects. These observations are obtained for the bearing and interface parameters taken from recent literature, and will be valid for similar assemblies. Based on the effect analysis carried out, a systematic approach is suggested for identifying bearing and interface contact parameters from experimental measurements

    A Modeling approach for analysis and improvement of spindle-holder-tool assembly dynamics

    Get PDF
    The most important information required for chatter stability analysis is the dynamics of the involved structures, i.e. the frequency response functions (FRFs) which are usually determined experimentally. In this study, the tool point FRF of a spindle-holder-tool assembly is analytically determined by using the receptance coupling and structural modification techniques. Timoshenko’s beam model is used for increased accuracy. The spindle is also modeled analytically with elastic supports representing the bearings. The mathematical model is used to determine the effects of different parameters on the tool point FRF and to identify contact dynamics from experimental measurements. The applications of the model are demonstrated and the predictions are verified experimentally

    Spectrally accelerated biconjugate gradient stabilized method for scattering from and propagation over electrically large inhomogeneous geometries

    Get PDF
    Scattering from and propagation over rough-terrain profiles, as well as reentrant surfaces are investigated using an integral equation (IE)-based spectrally accelerated biconjugate gradient stabilized (SA-BiCGSTAB) method, with a storage requirement and a computational cost of O(N) per iteration, where N is the surface unknowns in the discretized IE. Numerical results in the form of current and path loss are presented and compared with previously published as well as measured results in order to assess the accuracy and efficiency of this method. © 2005 Wiley Periodicals, Inc

    Closed-form Green's function representations in cylindrically stratified media for method of moments applications

    Get PDF
    Closed-form Green's function (CFGF) representations for cylindrically stratified media, which can be used as the kernel of an electric field integral equation, are developed. The developed CFGF representations can safely be used in a method of moments solution procedure, as they are valid for almost all possible source and field points that lie on the same radial distance from the axis of the cylinder (such as the air-dielectric and dielectric-dielectric interfaces) including the axial line (ρ = ρ′ and φ = φ′), which has not been available before. In the course of obtaining these expressions, the conventional spectral domain Green's function representations are rewritten in a different form so that i) we can attack the axial line problem and ii) the method can handle electrically large cylinders. Available acceleration techniques that exist in the literature are implemented to perform the summation over the cylindrical eigenmodes efficiently. Lastly, the resulting expressions are transformed to the spatial domain using the discrete complex image method with the help of the generalized pencil of function method, where a modified two-level approach is used. Numerical results are presented in the form of mutual coupling between two current modes to assess the accuracy of the final spatial domain CFGF representations. © 2009 IEEE

    Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF

    Get PDF
    Regenerative chatter is a well-known machining problem that results in unstable cutting process, poor surface quality and reduced material removal rate. This undesired self-excited vibration problem is one of the main obstacles in utilizing the total capacity of a machine tool in production. In order to obtain a chatter-free process on a machining center, stability diagrams can be used. Numerically or analytically, constructing the stability lobe diagram for a certain spindle-holder-tool combination implies knowing the system dynamics at the tool tip; i.e., the point frequency response function (FRF) that relates the dynamic displacement and force at that point. This study presents an analytical method that uses Timoshenko beam theory for calculating the tool point FRF of a given combination by using the receptance coupling and structural modification methods. The objective of the study is two fold. Firstly, it is aimed to develop a reliable mathematical model to predict tool point FRF in a machining center so that chatter stability analysis can be done, and secondly to make use of this model in studying the effects of individual bearing and contact parameters on tool point FRF so that better approaches can be found in predicting contact parameters from experimental measurements. The model can also be used to study the effects of several spindle, holder and tool parameters on chatter stability. In this paper, the mathematical model, as well as the details of obtaining the system component (spindle, holder and tool) dynamics and coupling them to obtain the tool point FRF are given. The model suggested is verified by comparing the natural frequencies of an example spindle-holder-tool assembly obtained from the model with those obtained from a finite element software

    Concordance of LDL-C Estimating Equations with Direct Enzymatic Measurement in Diabetic and Prediabetic Subjects

    Get PDF
    Low-density lipoprotein cholesterol (LDL-C) is a well-established biomarker in the management of dyslipidemia. Therefore, we aimed to evaluate the concordance of LDL-C-estimating equations with direct enzymatic measurement in diabetic and prediabetic populations. The data of 31,031 subjects included in the study were divided into prediabetic, diabetic, and control groups according to HbA1c values. LDL-C was measured by direct homogenous enzymatic assay and calculated by Martin-Hopkins, Martin-Hopkins extended, Friedewald, and Sampson equations. The concordance statistics between the direct measurements and estimations obtained by the equations were evaluated. All equations evaluated in the study had lower concordance with direct enzymatic measurement in diabetic and prediabetic groups compared to the non-diabetic group. Even so, the Martin-Hopkins extended approach demonstrated the highest concordance statistic in diabetic and prediabetic patients. Further, Martin-Hopkins extended was found to have the highest correlation with direct measurement compared with other equations. Over the 190 mg/dL LDL-C concentrations, the equation with the highest concordance was again Martin-Hopkins extended. In most scenarios, the Martin-Hopkins extended performed best in prediabetic and diabetic groups. Additionally, direct assay methods can be used at low values of the non-HDL-C/TG ratio (<2.4), as the performance of the equations in LDL-C estimation decreases as non-HDL-C/TG decreases

    Bovine Colostrum and Its Potential for Human Health and Nutrition

    Get PDF
    Colostrum is the first milk produced post-partum by mammals and is compositionally distinct from mature milk. Bovine colostrum has a long history of consumption by humans, and there have been a number of studies investigating its potential for applications in human nutrition and health. Extensive characterization of the constituent fractions has identified a wealth of potentially bioactive molecules, their potential for shaping neonatal development, and the potential for their application beyond the neonatal period. Proteins, fats, glycans, minerals, and vitamins are abundant in colostrum, and advances in dairy processing technologies have enabled the advancement of bovine colostrum from relative limitations of a fresh and unprocessed food to a variety of potential applications. In these forms, clinical studies have examined bovine colostrumas having the substantial potential to improve human health. This review discusses the macro-and micronutrient composition of colostrum as well as describing well-characterized bioactives found in bovine colostrum and their potential for human health. Current gaps in knowledge are also identified and future directions are considered in order to elevate the potential for bovine colostrum as a component of a healthy diet for a variety of relevant human populations

    On the capacity of printed planar rectangular patch antenna arrays in the MIMO channel: Analysis and measurements

    Get PDF
    Printed arrays of rectangular patch antennas are analyzed in terms of their MIMO performance using a full-wave channel model. These antennas are designed and manufactured in various array configurations, and their MIMO performance is measured in an indoor environment. Good agreement is achieved between the measurements and simulations performed using the full-wave channel model. Effects on the MIMO capacity of the mutual coupling and the electrical properties of the printed patches, such as the relative permittivity and thickness of the dielectric material, are explored. © 2006 IEEE

    Antimicrobial activities of some medicinal essential oils

    Get PDF
    S u m m a r y in this study, the antimicrobial properties of essential oils obtained from Coriandrum sativum, Foeniculum vulgare Miller, Salvia triloba, Laurus nobilis L., Citrus limon and Origanum smyrnaeum L. were investigated. A total of eight microbial organisms belonging to six species of bacteria, namely Salmonella typhimurium, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli and Enterobacter aerogenes, as well as two fungi, Candida albicans and Aspergillus niger, were studied using a disc-diffusion and agar dilution (minimal inhibition concentration) method. the antimicrobial activity of essential oils obtained from the six plants turned out to be more effective in the case of bacteria than against fungi. the antimicrobial activity against Gram-positive bacteria was more pronounced than against Gram-negative ones. All the investigated plants are known as having healing properties and are used to treat various diseases. the essential oils obtained from L. nobilis and O. smyrnaeum showed the highest antifungal activity against C. albicans and A. niger, while the essential oils obtained from F. vulgare showed the highest antimicrobial activity against P. aeruginosa and E. coli. On the other hand, the essential oils obtained from O. smyrnaeum showed stronger antibacterial activity in the case of E. aerogenes and S. aureus, but were not equally effective against E. coli. the other crude essential oils showed varied levels of antibacterial and antifungal activity. the minimal inhibition concentrations (Mic) of the essential oils obtained from O. smyrnaeum and of those obtained from L. nobilis ranged from 1.17 to 4.71 mg/ml, and 2.4 to 19.2 mg/ml, respectively
    corecore